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Renormalization procedure for directed self-organized critical models
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Directed models of self-organized criticality are studied in the framework of a real-space renormalization
group of a different type. The identification of a suitable phase space in which to define the renormalization
transformation and the coupling with the stationarity condition enables us to clarify the nature of the critical
state. The renormalization equations are found to have an attractive fixed point, as expected from the self-
critical nature of the model. The values of the critical exponents obtained by this procedure are in excellent
agreement with exact resul{$51063-651X96)10007-§

PACS numbe(s): 64.60.Ak, 02.50-r, 05.40+]

I. INTRODUCTION the critical state. This corresponds to the identification of the
proper phase space in which to study the evolution of the

Over the past few years much attention has been devotediynamics under scale transformations. The second step is the
to the study of sandpile models, a class of systems introcoupling of the renormalization equations to a stationarity
duced by Bak, Tang, and Wiesenfeld as a paradigm of selfcondition that characterizes the driving of the system in its
organized Crmcahty(soo [1] This term refers to the ten- Steady state. The Stationarity condition prOVideS the Welght
dency of |arge dynamical Systems to evo|ve Spontaneously t@f the geometrical Conﬁgurations in the Stationary state. This
a critical state having spatial and temporal self-similarity.condition allows us to obtain the renormalized stationary pa-
Many examp|es of Systems Showing this kind of behaviorrameters that dr|Ve the SyStem n the asymptotlc Steady State.
have been found in different fields ranging from geo|@@}l The RG transformation we obtained evolves under itera-
to economic{?,] to b|o|ogy [4] Recenﬂy Pietroneret al. tion to a Completely attractive nontrivial fixed pOint. This
[5] introduced a renormalization scheme of a type that is abléeflects the self-criticality of the model and represents a
to describe the self-organized critical state of sandpile modmechanism for the generation of SOC. We are also able to
els. From the point of view of the renormalization group identify the universality class of various models by studying
(RG), a SOC system can be viewed as a system in which n§1e basin of attraction of the RG fixed point.
fine tuning of a critical parametde.g., the temperature in  Finally, we compute the critical exponents that describe
usual phase transitions necessary in order to get critical- the system. This is accomplished by making direct use of the
ity. The critical state is reached spontaneously and this coscale-invariant dynamics, i.e., the fixed-point properties of
responds to a completely attractive fixed point of the Rgth_e system. The values obtained are in excellent agreement
transformation. More recently this scheme has been extendéth the exact results of Dhar and Ramaswaly
and generalized, to the wide class of dynamical systems hav- The outline of the paper is the following. In Sec. Il we
ing a nonequilibrium stationary state with critical properties,recall the definition of the model and discuss its phenom-
under the denomination of dynamically driven renormaliza-€nology. In Sec. lll we discuss the choice of a suitable cell
tion group[6]. In this paper we discuss the application of for the cell-to-site transformation. Section IV is devoted to
such a scheme to the class of directed sandpile models. Dh#te choice of the parameter spaphase spagen which to
and Ramaswami?] introduced a variant of the origina| Study the evolution of the system under RG transformation.
sandpile modelthe Bak-Tang-WiesenfeldBTW) model In Sec. V we write the renormalization equations and couple
[1] incorporating a preferential direction into the dynamicalthem to the stationarity condition. In Sec. VI we compute the
rules of the BTW model. They found an exact solution to thecritical exponents and we identify the different universality
model and calculated the critical exponents and the twoclasses. Finally, in Sec. VIl we draw the conclusions.
point correlation function. The introduction of a preferred
direction is, as in percolation problems, a relevant perturba-
tion, i.e., a perturbation that changes the critical behavior of [l. DEFINITION OF THE MODEL
the system. Indeed, the isotropic BTW model and its directed
variant belong to different universality classes.

The first step of the method is the identification of a suit-
able cell for the definition of the cell-to-site transformation.
The crucial problem is that the cell has to be invariant unde
RG transformatiof8]. For directed models this means thatit (i) Each variableE(i) is initialized with a random integer
has to conserve the orientation with respect to the preferensalue such that &E(i)<E., whereE. is a threshold value
tial direction. From this point onward the method can be splitwe fix equal to 3.
into two phases. The first is the identification of the param- (ii) A site is chosen at random and its energy is increased
eters that characterize the static and dynamic properties d&fy one unit.

In this section we specify the rules of a directed sandpile
model [7] defined on a triangular lattice. Each sités as-
signed an integer variabl(i) called energy. The dynamics
Pf the model is defined by the following rules.
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wherer andt are the linear dimension along the preferential
‘ direction and the lifetime of the relaxation process, respec-
tively. The variabless, r, andt are linked by the scaling
relations
O

® t~sX, t~r? s~rP, (5)

We have defined six critical exponents, which are not all
independent. By definition we obtain

XZB. (6)

From the identitie®(r)dr=P(s)ds=P(t)dt, withr, s, and
t related by Eq.5), the following scaling relations can be

/ obtained:
D(7—1)

=1+ —-
9 @ a=1 — @)
® A=1+D(7—1). (8)
Therefore, in order to describe the critical behavior of the
Q Stable Critical Unstable system, it is enough to compute three critical exponents, for
site site site exampler, z, andD.
Dhar and Ramaswamy found that3. The value of the
FIG. 1. Definition of the different kinds of sites and the micro- dynamical exponent is deduced from the observation that the
scopic dynamical rule for the directed sandpile model. avalanche front advances at a constant rate of one site at each
time step. Therefore

(i) If E(i)=E_ for a sitei, this site relaxes and transfers

its energy to the three nearest-neighbor sites in the half plane r~t ©)
defined by the preferential directigfig. 1): and we obtain
E(i)—E(i)-3, z=1. (10

) ] ] Note that in the case of a directed model the expoient
E()—E()+1 Vje{3nn}, (D which links the area of an avalanciihe number of sites
involved and the linear extension of the avalanche in the
where{3nn} denotes the set of nearest neighbors sites thasreferential direction, is not, as in the isotropic case, the

receive the energy. fractal dimension of the avalanche clustés, which by
(iv) The relaxation procesavalanchgcontinues until all  virtue of the compactness of the clustersDis=2 [7] (see

the sites have relaxed, i.e., urfi{i) <E_Vi. Ref.[9] for the isotropic case In directed models there are
(v) Steps(ii) is repeated. two different lengths characterizing an avalanche: the dis-

After a transient period the system reaches a stationa
critical state in which the energy added to the system equal
on average, the energy flowing out of the system by mean
of avalanches. This critical state can be characterized by the S~TW. (12)
following set of critical exponents. Denoting wigthe num-
ber of sites involved in an avalanche, the distribution of avaphar and Ramaswamy showed that the perimeter of the ava-
lanches is described by a power law lanche can be described as two annihilating random walks.

This fact yields the scaling for the avalanche wieth

nd the avalanche widtlv. The number of sites involved in

rtgmcer from the origin of the avalanche to its active front
g’n avalanche scales as

P(s)~s™". 2

W~t1/2~r1/2. (12)
Analogously, Using this result yields the required scaling relation
P(r)"“r_)\ (3) S~r3/2' (13)

giving D=2. The values we obtain in Sec. VI by our RG
and calculation are in excellent agreement with these results.
The dynamics of the system is characterized by two dif-
P(t)~t™ ¢, (4)  ferent time scale$5]: the avalanches are very fast with re-
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o o o length scales® anda®®*?) at scales k) and(k+1) respec-
tively, obeya®* /a0 =2,
@) O
IV. PHASE SPACE
o 0] The choice of the phase space in which to define the

renormalization transformation has to reflect the property of
the system to show a time-scale separation: avalanches are
@) O very fast with respect to the average time between two addi-
tion of energy.
In full generality we can identify three classes of sitg
(see Fig. L

O @) O

FIG. 2. Elementary cell for a triangular lattice. (i) Stable sitesire those sites whose energy is far from the
critical value. This implies that the addition of a quantum of

spect to the average time between two additions of energynergy will not induce a relaxation. _

That means that during the evolution of an avalanche there is (il) Critical sitesare those sites whose energy differs by
no addition of energy. Each avalanche is thus a well define@n€ from the critical value so that the addition of a quantum
object. On the other hand, the slow dynamite dynamics ©f energy will induce relaxation

of additions of energyaccounts for the stationary properties (i) Unstable sitesre those sites whose energy equals or
of the system. exceeds the critical value so that they will relax at the next

time step.

Between avalanches the system contains only critical and
Ill. CHOICE OF A CELL stable sites so that the critical state can be described by a

In order to implement a renormalization-group procedureorObabi"ty P Which_ is the density of critical sites. The pa-
for this model we use a cell-to-site transformation to averag&®Meterp can be viewed as a control parameter that drives
out the degrees of freedom at small scale. First we choose (g€ balance between the energy added to the system and the
cell that is invariant under the RG transformation, i.e., whosé€n€rgy flowing out of the system with the avalanches. How-
orientation with respect to the preferential direction does nofVer: it is not a control parameter in the usual sense of criti-
change under the RG transformation. The natural choice fof@! Systems. Tuning op to get criticality is not necessary
a cell on the triangular latticéFig. 2) is not invariant under Pecause successive applications of the RG transformation ad-
the coarse-graining transformation. At each step of thdUSt it to its critical value. _ _
coarse-graining procedure, the cell rotates by 90° with re- The above representation of a configuration can be ex-
spect to the preferential directidB]. Therefore the elemen- t€nded to describe the system at any length scile A
tary cell is not a good choice because at each step it produc&9arse-grained site |s(k?a|d to btableif the addition of a
a lattice that has a different orientation with respect to theduantum of energyE™ at the scale K) will not m%x_:e
preferential direction. That means that the dynamical ruleg€l@xations towards neighboring sites. The quani is
could be different at any length scale. Therefore we have t§/SO the mean energy that two sites exchange at the length
choose a different cell, one that preserves the lattice orientxcale €). On (tkr)me other hand, a site is calledtical if the
tion. The simplest cell satisfying the requirements is showrfddition of SE™ will induce a relaxation. With these defini-

in Fig. 3[8]. This cell has a scale factor equal to 2, i.e., thellonS in mind, we introduce the parametéf) as the density
of critical sites at the scalek.

The dynamic rule itself changes under the coarse-graining
transformation: in the microscopic dynamics a site relaxes
into three neighbors, but this is not necessarily the case for a
coarse-grained cell. In order to include the possible prolifera-
o tions of parameters occurring under coarse-graining transfor-
mation, we define, independently of what happens at the
minimal scale, a probability vectd®?® whose components
represent the probabilities for the possible mechanisms for
energy transfer at a coarse-grained scéle (
Given a series of relaxations of sites at a scdlg (ve
o have to specify the corresponding relaxations of cells at the
scale k). These are the relaxations of sites at the sékle
+1). A site at the scalék+1) relaxes if the relaxation pro-
cesses at the lower scalk)(span the cell according to the
spanning condition and transfers the energy to some neigh-
0O o o boring cells. A cell is said to be spanned if the relaxation
processes involve at least two different sites. In our scheme
FIG. 3. Four-site cell invariant under the RG transformation the relaxation at a generic scale) (can occur in five differ-
used in our RG scheme. ent ways(Fig. 4): P, the probability for the energy trans-

O O




54 RENORMALIZATION PROCEDURE FOR DIRECTE.. . . 1429

o o
1
‘/_P
o 21 o
o o
o o
o
/ 1
—P
o 2% o
o) o
o]
o e} o o
o o FIG. 5. Six siteqin blacK that constitute the so-called apparent

/ \ cell, i.e., the cell including all the sites involved in the process of
R energy transfer from a four-site cell. Arrows indicate an energy
transfer process that involves a site external to the four-site cell.

lattice [7]. We will consider also another model correspond-
FIG. 4. Five different ways for the energy transfer, Their prob- N9 t0 the vectorP®=(0,0,0,1,0. This model is equivalent
abilities correspond to the five components of the veBtor to the Dhar-Ramaswamy model on a square lattice. In fact,
one can obtain our triangular lattice by compressing a square
fer to one lateral neighboring sit®{" the probability for lattice in the diagonal direction and considering the same
the energy transfer to the central neighboring st§¢ the  microscopic rules, i.e., the transfer to the nearest-neighboring
probability for the energy transfer to the central and to one ofites in the preferential direction on the square lattice be-
the lateral neighboring site®{¥ the probability for the en- comes the transfe?; on the triangular lattice.
ergy transfer to both the lateral neighboring sites; &
the probability for the energy transfer to the three neighbor- V. RENORMALIZATION EQUATIONS
mgv\s/geﬁéve chosen a limited parameter space that does not In order to writg the renormali;ation transformation it is .
allow for relaxation into next nearest neighbors or backward'€c€ssary to consider all the possible processes at the generic
relaxations(and therefore also no multiple relaxatignshis ~ Scale k) that contribute to a single process at the scale
choice is obviously an approximation, but one that is alwayst 1)- The RG transformation is given by the sum of the sta-
present in real-space renormalization-group calculations. whstical weights of the dynamical processes allowed by the
have incorporated the preferred direction into our schem&Panning condition. A transfer processes satisfies the span-
through the choice of the parameter space and the spannifi§!9 condition if it starts_ from the centra_lll site or the one at
condition. A more generalized scheme should differentiatd’e top of the cell(top sitg. The probability for a transfer
between isotropic and directed models only through thé’fOCESS to start in one of the two sites is proportional to the
spanning condition. The spanning condition for directegProPability for each site to receive energy by external addi-
models would be to consider only processes that distributdOn Or Dy transfer from other sites during an avalanche. Be-
energy in the preferred direction. cause only two sites externa_llto the cell can transfer energy
We note that among the processes that contribute to thto the ce.ntrgl site the probability for a process to begin at the
different components oP® there are also processes that CeNtral site P~ P+ P, +2P+2P5. In the same way one
involve sites 2 and 3 in Fig. 5. Such processes do not transf&an find the probabilityP, for a process to start at the top
energy to the cells to which sites 2 and 3 belong; those proglte. Normalizing t_hese probabilities with the condition
cesses, in fact, do not span but just touch these cells in tHec+ Pt=1 one obtains
process of energy transfer to other ceII§. Therefore sites 2 P +P,+2P;+2P;
and 3 can only transfer energy out of their own cells at scale

(k). In order to take into account such processes we consider 2P+ Py+3P,+4P(+5P;’

an apparent cell composed of six sites, the four sites of the

chosen cell plus sites 2 and 3 of Fig. 5. The statistical = P+ Pq+2P,+2P¢+3P3 _ (14)
weights of processes not involving sites 2 and 3 will be 2P+ Pyt 3P, +4P;+5P;3

unaltered. The cell used for the renormalization procedure is L ) .
the four-site cell and the introduction of the apparent cell is! he statistical weight of a process has to include a factor that

just a way to take into account processes in which site 1€Presents the probability for obtaining the corresponding
transfers energy to sites 4, 5, or 6 in an indirect way via theonfiguration. The probability for a critical cell to be in a

sites 2 or 3. configuration witha critical sites is
The model we have defined in Sec. Il corresponds, at the a(1— p)6-a
minimal scale, to the vectd?®=(0,0,0,0,). This model is W, (p)= P p (15)

6 a —a!
the one defined by Dhar and Ramaswamy on a triangular NaZo-op(1—p)°
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the renormalization equations. One has to discard all the pro-
cesses that do not correspond to dynamical procedses
example, sequences that represent a relaxation of a stable
site) and to accept just the processes that fulfill the imposed
spanning condition. By implementing this algorithm one re-
produces all the processes that contribute to the renormaliza-
tion equations.

Equationg16) and(17) are the renormalization equations
for the dynamical variables. We have yet to find how the
configurational parametef®) is renormalized. This equation
will express the stationarity of the critical state. It is derived
from the following expression, which states the balance be-
tween the energy input to a cell and the energy flowing out

FIG. 6. Example of one energy transfer process with statisticapf It
weight equal to} P4P,P;.

o]

5E<k+l):p(k+l)5E(k+1)[ng+l)+ Pék+l)

where N, is_the number_of configu_rations with critical +2(P(2k+1)+P$k+1))+3p(3k+1)], (18)
sites. Denoting byw, the index ranging over all configura-

ity of a transfer process of kind will be the scale(k+1), i.e., the mean energy exchanged between
N,, two cells at that scale. From the previous relation we easily
PUY=3 Wo(p) 3 P (),  (ag  oPman
a w,=1
1

(k+1) - " - pkth= :
whereP " ~(w,) is the probability for a transfer of king P D pErD  o(pIFD 4 pkFD) 4 3pK+T)
from the cellw, at the scalgk+1), with the normalization (19)
condition

Equation(19) provides, independently of the definition of
» D, SEXT1), the renormalized density of critical sites at the scale
= Py (@) =Ng. (k+1). Moreover, it couples dynamical parameters of the
system to the static one, creating a feedback between the

The probabilityP <" D(w,) is the sum over all the different control parametep® and the dynamics of the system. This

N

[23
w,=1

transfer processes, from the CQU( at the Sca|e|()' contrib- is the mechanism generating the Self'Criticality of the model.
uting to the transfer process of kindat the scalgk+1): The complete RG equations are then
N(X
P (0 =PI Q0+ P Qic¥(wa), PE=2 Walp) 2 | P2 Qi (w,)
17
(k) X, (k)

whereQiﬂj is the statistical weight of thih process started +Pe Z Qi'e (w“))'
at thejth site, which contributes to anprocess. The indices 20)
in parentheses refer to the length scale, wRijend P, are pUt D =[Pkt D) 4 plktl) L p(plktd) | plkt1))
the probabilities that the transfer process starts from the top
or the central site, respectively. In Fig. 6 an example is +3PYrUL

shown of a transfer process that transfers energy to two .
neighborin%; cells. Its weight is given by  Starting with an arbitrary initial conditiop©,P?), we
2l—plipPp. can study the flow diagram and the fixed points just be iter-
The number of processes that contribute to Bf) is  ating the renormalization equatiof®0). We found that the
large (several thousandiso that it is impractical to find all system of equations has a stable fixed pdjsit,P*). In
the configurations by hand. In order to find all the processe3able | we show the evolution under scale transformation of
at a certain scale that contribute to a simple process at #the parameters and the numerical values of the fixed point
higher scale we have proceeded as follows. A site can trangarameters for the two models defined by the minimum scale
fer energy to up to three sitdthe nearest neighbors in the vectorsP®=(0,0,0,0,1 and P©=(0,0,0,1,0 for two arbi-
preferential direction The possibility for energy transfer is trary values ofp®. Both models evolve asymptotically to-
represented by a binary bond that is one or zero dependingards the same stable fixed point, which corresponds to the
on whether or not it participated in the relaxation process. Irsame scale-invariant dynamics. This means that the two
the apparent cell there are six sites and so we have eighteemodels belong to the same universality class.
different bonds. Each relaxation process then corresponds to In addition, we checked that systems for which
a particular sequence of bits. In this way it is possible toP {9+ P Q)+ P =0 converge towards the same stable fixed
generate all the possible relaxation processes. Among afioint, i.e., they belong to the same universality class. Sys-
these processes one has to choose the ones that contributdems for which P (0) 4 PooytP (=0 converge to some
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TABLE I. Iteration of the RG equations for the parameters of P(r)~rP(r=b-1,
two microscopic model$(a) with P{=1 and (b) with P{®=1]
corresponding t©=(0,0,0,0,2 andP®=(0,0,0,1,0. Inserting this expression i21) we obtain
(k) P, Pq P, Py Ps P K=1-2@21-7

@ and

0 0.000 0.000 0.000 0.000 1.000 0.900
1 0.000 0.000 0.003 0.000 0.997 0.334 2In(1-K)
2 0.000 0506 0259 0000 0235 0578 =l (22)
3 0.035 0.342 0.307 0.007 0.308 0.518
© 0.058 0.308 0.319 0.012 0.303 0.516 where we used the following value as the scale factor of our

coarse-grained cell:
(b)

0.049 0.327 0.305 0.010 0.309 0.517
0.058 0.308 0.319 0.012 0.303 0.516

0 0.000 0.000 0.000 1.000 0.000  0.400
1 0.144 0.000 0.056 0.028 0772  0.380 aktd)

2 0.028 0.370 0.290 0.005 0.306 0.524 20 - 2. (23
3

[0e)

K can expressed in terms of the scale-invariant dynamics as

] ) ] the probability that at the scal&) the energy is transferred
other unstable fixed points. Let us consider, for example, they stable cells:

system withP {Y=1. This is a fixed point because the dy-
namical evolution cannot generate lateral energy transfers.
This fixed point is unstable: any deviation from{=1 K= (P} +P¥)(1—p*)+(P¥ +P$)(1—p*)2
drives the system away from it.
+P5(1-p*)% (24)

VI. CALCULATION OF THE CRITICAL EXPONENTS
Using the fixed point parameters and inserting expression
As we have seen in the previous sections, the fixed point?4 into (22), we get the value
of our renormalization scheme has a completely attractive
nature. This implies that it is not possible to compute the
critical exponents by the standard method used in critical
phenomena. The calculation of the critical exponerasdz
IS carried out using the fixed point dynamics, tr_\us OVETrCoOMi, axcellent agreement with the exact resuit: obtained by
ing the problem posed by the complete attractiveness of thBhar and Ramaswary]
RGI flgw. I h h hat | d fully ch The dynamical exponent links the linear extension of an
n Sec. Il we have shown that in order to fully character- o, 5nche to the time needed for its evolution. As we already

ize the critical 'behawor of the system, it is necessary topointed out, for directed models one considers the linear ex-
calculate three independent exponents, &gthe exponent tension in the preferential direction

that describes how the area of an avalanche scales with its
linear dimension in the preferential direction; the avalanche
exponentr, and the dynamical exponent (t(k)>~a<k)z

Let us start with the calculation dd. We have already '
shown that, at the minimal scale, the two models withyhere (t9) is the average time it takes for a dynamical
P'%=(0,0,0,0,1 and P®=(0,0,0,1,0 produce avalanches process at the scaleky to cross the cell. Comparing two
whose area scales with an exponBrt 3. The reasoning that  gnsecutive scales. one obtains
leads toD =2 in these models can be applied to any system '
satisfying P {9+ P+ P =0 at any scalek). In particu-

7=1.328,

4 . i . . <t(k+l)> a_(k-*—l) z
lar, this holds for the scale-invariant dynamics corresponding - =97 (25)
to the nontrivial fixed pointp*,P*) (Table . (t0) a® '
As in [5], for the calculation of the avalanche exponent
we defineK as the probability that a relaxation process isSO that
limited between the scalek) and(k+1) and does not ex- (k+1)
tend further: In u
(t™)
Lk D) 2=—F (26)
S0 P(r)dr In 2
=— (21
J aP(r)dr The calculation of the dynamical exponeris performed

by the following procedure. A process that transfers energy
By simple scaling arguments we get that out of a cell at the length scal&+1) is composed of many
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subprocesses at the scalg.(We denote b {‘; the number

of steps involved in théth x coarse-grained process starting DY =10 D W(a) D (P%“Z QM (w, )M},
at thejth site. Thus, at a scalé&+1) the process character- “x Ca '

ized byM |X1 runs in a time given by

+PIY Qi (w MY, |. (27)

The average time at the length scdler1) is a weighted Inserting Eq.(27) into Eqg. (26) yields an expression for the
average of all the process time};: dynamical exponent

In| 2 W(a) X (P%”E QN w )M +PY Qfé”(wa)Mic”
a,X [ i i
z= o . (28
|
Summing over all contributions gives parametrization of the static and dynamic properties of the

system and the coupling of the renormalization equations to
a condition that expresses the stationarity of the critical state.
In this way we obtain the RG transformations characterizing

the evolution of the system under a change of scale. This

of an_avalanche moves a_t a qonstant rate of one unit per tIrT}%ethod enables us to characterize the nature of the critical
step in the preferential direction at any scak. ( state and its scale invariant dynamics.

between the exact reauls and he osuls we obtained for .. A5 I the case of sotrapic modelS] the RG tiansforma-
tion was found to have an attractive stable fixed point that

and 7 are not due to rounding errors. Indeed, the renormal-

o " accounts for the self-critical character of these models. We
ization procedure we used to compute the critical exponent:

is not an exact procedure: we have neglected, for exampl !%entified th'e universali'ty classes pf several models.t.)y study-
the next-nearest-neighbor.energy transfer ' ?r‘lg the basin of qttractlon of t'h.e fixed point. In addition, we

' computed analytically the critical exponents and obtained
values that are in excellent agreement with the exact results
of Dhar and Ramaswanty].

In this paper we have presented a renormalization scheme
of a different type for the study of directed sandpile models.
This approach represents an application of the so-called dy-
namically driven renormalization group and it follows the The authors are grateful to L. Pietronero, A. Vespignani,
strategy used ifi5] for the nondirected sandpile models. The and S. Zapperi for interesting discussions. A.B. wishes to
method consists of two steps: the identification of a suitablehank O. Biham for his guidance.

z=1.001, (29

which is almost identical to the exact result. In fact, the front

VIl. CONCLUSION
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